Exam Analysis on Manifolds

Wednesday, April 10, 2013, 14:00-17:00
This exam consists of three assignments. You get 10 points for free. Using notes or books is not allowed.

Problem 1. If $x=\left(x^{1}, x^{2}\right)$ is a nonzero point in \mathbb{R}^{2}, then the straight line passing through that point and the origin is the set $\left\{\lambda\left(x^{1}, x^{2}\right) \mid \lambda \in \mathbb{R}\right\}$. Denote this line by $\left[x^{1}, x^{2}\right]$. The set of all straight lines in \mathbb{R}^{2} through the origin is denoted by $\mathbb{P}^{1}=\left\{\left[x^{1}, x^{2}\right] \mid\left(x^{1}, x^{2}\right) \in\right.$ $\left.\mathbb{R}^{2} \backslash\{(0,0)\}\right\}$, and is called the real projective line. If $\left[x^{1}, x^{2}\right] \in \mathbb{P}^{1}$ then x^{1}, x^{2} are called homogeneous coordinates.
Note that if $\left(x^{1}, x^{2}\right)=\lambda\left(y^{1}, y^{2}\right)$ then $\left[x^{1}, x^{2}\right]=\left[y^{1}, y^{2}\right]$. However, if $\left[x^{1}, x^{2}\right]$ is such that $x^{1} \neq 0$, and $\left[y^{1}, y^{2}\right]=\left[x^{1}, x^{2}\right]$, then y^{1} is also nonzero. Thus, denote with $U_{1} \subset \mathbb{P}^{1}$ the subset of elements whose first homogeneous coordinate is nonzero. Similarly, $U_{2} \subset \mathbb{P}^{1}$ is the subset whose second homogeneous coordinate is nonzero.

We define two continuous maps $\varphi_{1}: U_{1} \rightarrow \mathbb{R}$ and $\varphi_{2}: U_{2} \rightarrow \mathbb{R}$ by

$$
\varphi_{1}\left(\left[x^{1}, x^{2}\right]\right)=\frac{x^{2}}{x^{1}}, \quad \varphi_{2}\left(\left[x^{1}, x^{2}\right]\right)=\frac{x^{1}}{x^{2}}
$$

(a) (5 points). Show that these maps do not depend on the homogeneous coordinates x^{1} and x^{2} of $\left[x^{1}, x^{2}\right]$; i.e., if $\left[x^{1}, x^{2}\right]=\left[y^{1}, y^{2}\right]$ then $\varphi_{i}\left(\left[x^{1}, x^{2}\right]\right)=\varphi_{i}\left(\left[y^{1}, y^{2}\right]\right)$ for $i=1,2$.
(b) (10 points). Show that the continuous maps $\psi_{i}: \mathbb{R} \rightarrow \mathbb{P}^{1}$ defined by

$$
\psi_{1}(u)=[1, u], \quad \psi_{2}(u)=[u, 1]
$$

are left- and right-inverses for φ_{1} and φ_{2}, respectively.
(c) (10 points.) Show that $\mathscr{A}=\left\{\left(U_{1}, \varphi_{1}\right),\left(U_{2}, \varphi_{2}\right)\right\}$ is a smooth atlas for \mathbb{P}^{1}.

Solution.

(a) If $\left[x^{1}, x^{2}\right]=\left[y^{1}, y^{2}\right]$, then any element from the one is an element of the other. In particular, $\left(y^{1}, y^{2}\right) \in\left[x^{1}, x^{2}\right]$ which means $\left(y^{1}, y^{2}\right)=\lambda\left(x^{1}, x^{2}\right)$ for some λ, and then

$$
\varphi_{2}\left(\left[y^{1}, y^{2}\right]\right)=\frac{y^{1}}{y^{2}}=\frac{\lambda x^{1}}{\lambda x^{2}}=\frac{x^{1}}{x^{2}}=\varphi_{1}\left(\left[x^{1}, x^{2}\right]\right)
$$

Similarly for φ_{2}. (Note that since y^{1}, y^{2} are homogeneous coordinates for $\left[y^{1}, y^{2}\right]$, they are not simultaneously zero, so that λ also must be nonzero.)
(b) We calculate

$$
\begin{aligned}
& \varphi_{1}\left(\psi_{1}(u)\right)=\varphi_{1}([1, u])=\frac{u}{1}=u \\
& \psi_{1}\left(\varphi_{1}\left(\left[x^{1}, x^{2}\right]\right)\right)=\psi_{1}\left(\frac{x^{2}}{x^{1}}\right)=\left[1, \frac{x^{2}}{x^{1}}\right]=\left[x^{1}, x^{2}\right] .
\end{aligned}
$$

Similarly for ψ_{2}.
(c) U_{1} and U_{2} cover \mathbb{P}^{1}, because $[0,0] \notin \mathbb{P}^{1}$, and since $\varphi_{i}^{-1}=\psi_{i}$ and both are continuous, they are in fact homeomorphisms and therefore charts. Lastly, if $\left[x^{1}, x^{2}\right] \in U_{1} \cap U_{2}$ then the transition map $\kappa: \varphi_{1}\left(U_{1} \cap U_{2}\right)=\mathbb{R} \backslash 0 \rightarrow \varphi_{2}\left(U_{1} \cap U_{2}\right)$ is

$$
\kappa(u)=\varphi_{2} \circ \varphi_{1}^{-1}(u)=\varphi_{2}([1, u])=\frac{1}{u},
$$

which is clearly smooth (note that u cannot be zero). The same obviously holds for the other transition map. Therefore this atlas is a smooth atlas.

Problem 2. (25 points.) Consider \mathbb{R}^{3} with coordinates (x, y, z) and \mathbb{R}^{2} with coordinates (θ, φ). Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $g(\theta, \varphi)=(\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$, and let $\omega=x y \mathrm{~d} z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$. Calculate $\mathrm{d}\left(g^{*} \omega\right)$ and $g^{*}(\mathrm{~d} \omega)$ separately, and verify that they are equal.
Solution. We calculate

$$
\begin{aligned}
g^{*}(\omega) & =g^{*}(x y \mathrm{~d} z)=((x y) \circ g) g^{*}(\mathrm{~d} z)=(x \circ g)(y \circ g) \mathrm{d}(z \circ g) \\
& =\cos \varphi \cos \theta \cos \varphi \sin \theta \mathrm{d}(\sin \varphi)=\cos ^{3} \varphi \cos \theta \sin \theta \mathrm{~d} \varphi, \\
\mathrm{~d}\left(g^{*} \omega\right) & =\mathrm{d}\left(\cos ^{3} \varphi \cos \theta \sin \theta \mathrm{~d} \varphi\right)=\frac{\partial}{\partial \theta}\left(\cos ^{3} \varphi \cos \theta \sin \theta\right) \mathrm{d} \theta \wedge \mathrm{~d} \varphi \\
& =\cos ^{3} \varphi\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \mathrm{d} \theta \wedge \mathrm{~d} \varphi .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\mathrm{d} \omega & =x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} x \wedge \mathrm{~d} z, \\
g^{*}(\mathrm{~d} \omega) & =(x \circ g) \mathrm{d}(y \circ g) \wedge(z \circ g)+(y \circ g) \mathrm{d}(x \circ g) \wedge(z \circ g) \\
& =\cos \varphi \cos \theta \frac{\partial}{\partial \theta}(\cos \varphi \sin \theta) \cos \varphi \mathrm{d} \theta \wedge \mathrm{~d} \varphi+\cos \varphi \sin \theta \frac{\partial}{\partial \theta}(\cos \varphi \cos \theta) \cos \varphi \mathrm{d} \theta \wedge \mathrm{~d} \varphi \\
& =\cos ^{3} \varphi \cos ^{2} \theta \mathrm{~d} \theta \wedge \mathrm{~d} \varphi-\cos ^{3} \varphi \sin ^{2} \theta \mathrm{~d} \theta \wedge \mathrm{~d} \varphi=g^{*}(\omega) .
\end{aligned}
$$

10 points for each side.
Problem 3. Let $\mathbb{B}^{n}=\left\{\left.x \in \mathbb{R}^{n}| | x\right|^{2}=\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2} \leq 1\right\}$ be the filled sphere, and let

$$
\omega=\sum_{i=1}^{n}(-1)^{i-1} x^{i} \mathrm{~d} x^{1} \wedge \cdots \wedge \widehat{\mathrm{~d} x^{i}} \wedge \cdots \wedge \mathrm{~d} x^{n} \in \Omega^{n-1}\left(\mathbb{B}^{n}\right)
$$

(the hat over $\mathrm{d} x^{i}$ in the i-th term means that it is not present in that term).
(a) (10 points.) Calculate $\mathrm{d} \omega$.
(b) (10 points.) Show that

$$
\int_{\partial \mathbb{B}^{n}} \omega>0
$$

(c) (10 points.) Restricting ω to $\partial \mathbb{B}^{n}$ yields an ($n-1$)-form $\left.\omega\right|_{\partial \mathbb{B}^{n}} \in \Omega^{n-1}\left(\partial \mathbb{B}^{n}\right)$. Suppose $g: \mathbb{B}^{n} \rightarrow \partial \mathbb{B}^{n}$ is a smooth map from \mathbb{B}^{n} to its boundary. Show that

$$
\mathrm{d}\left(g^{*}\left(\left.\omega\right|_{\partial \mathbb{B}^{n}}\right)\right)=0 .
$$

(d) (10 points). Restricting g to the boundary $\partial \mathbb{B}^{n}$ of \mathbb{B}^{n}, we obtain a map $\left.g\right|_{\partial \mathbb{B}^{n}}: \partial \mathbb{B}^{n} \rightarrow$ $\partial \mathbb{B}^{n}$. Show that $\left.g\right|_{\partial \mathbb{B}^{n}}$ is not the identity.

Solution.

(a) $\mathrm{d} \omega=n \mathrm{~d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}$.
(b) $\int_{\partial \mathbb{B}^{n}} \omega=\int_{\mathbb{B}^{n}} \mathrm{~d} \omega=n \int_{\mathbb{B}^{n}} \mathrm{~d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}=n \operatorname{Vol}\left(\mathbb{B}^{n}\right)>0$.
(c) We know $\mathrm{d}\left(\left.g^{*} \omega\right|_{\partial \mathbb{B}^{n}}\right)=g^{*}\left(\left.\mathrm{~d} \omega\right|_{\partial \mathbb{B}^{n}}\right)$, but then $\left.\mathrm{d} \omega\right|_{\partial \mathbb{B}^{n}}$ is is an n-form on an $(n-1)$ dimensional manifold. Therefore it is 0 .
(d) Suppose that this restriction is the identity, then, using (b),

$$
0<\int_{\partial \mathbb{B}^{n}} \omega=\int_{\partial \mathbb{B}^{n}} \mathrm{id}^{*} \omega=\int_{\partial \mathbb{B}^{n}} g^{*} \omega=\int_{\mathbb{B}^{n}} \mathrm{~d}\left(g^{*} \omega\right)=0,
$$

a contradiction.

