Exam Analysis on Manifolds

Wednesday, April 10, 2013, 14:00-17:00

This exam consists of three assignments. You get 10 points for free. Using notes or books is not allowed.

Problem 1. If $x = (x^1, x^2)$ is a nonzero point in \mathbb{R}^2 , then the straight line passing through that point and the origin is the set $\{\lambda(x^1, x^2) \mid \lambda \in \mathbb{R}\}$. Denote this line by $[x^1, x^2]$. The set of *all* straight lines in \mathbb{R}^2 through the origin is denoted by $\mathbb{P}^1 = \{[x^1, x^2] \mid (x^1, x^2) \in \mathbb{R}^2 \setminus \{(0, 0)\}\}$, and is called the *real projective line*. If $[x^1, x^2] \in \mathbb{P}^1$ then x^1, x^2 are called homogeneous coordinates.

Note that if $(x^1, x^2) = \lambda(y^1, y^2)$ then $[x^1, x^2] = [y^1, y^2]$. However, if $[x^1, x^2]$ is such that $x^1 \neq 0$, and $[y^1, y^2] = [x^1, x^2]$, then y^1 is also nonzero. Thus, denote with $U_1 \subset \mathbb{P}^1$ the subset of elements whose first homogeneous coordinate is nonzero. Similarly, $U_2 \subset \mathbb{P}^1$ is the subset whose second homogeneous coordinate is nonzero.

We define two continuous maps $\varphi_1 \colon U_1 \to \mathbb{R}$ and $\varphi_2 \colon U_2 \to \mathbb{R}$ by

$$\varphi_1([x^1, x^2]) = \frac{x^2}{x^1}, \qquad \varphi_2([x^1, x^2]) = \frac{x^1}{x^2}$$

- (a) (5 points). Show that these maps do not depend on the homogeneous coordinates x^1 and x^2 of $[x^1, x^2]$; i.e., if $[x^1, x^2] = [y^1, y^2]$ then $\varphi_i([x^1, x^2]) = \varphi_i([y^1, y^2])$ for i = 1, 2.
- (b) (10 points). Show that the continuous maps $\psi_i \colon \mathbb{R} \to \mathbb{P}^1$ defined by

 $\psi_1(u) = [1, u], \qquad \psi_2(u) = [u, 1]$

are left- and right-inverses for φ_1 and φ_2 , respectively.

(c) (10 points.) Show that $\mathscr{A} = \{(U_1, \varphi_1), (U_2, \varphi_2)\}$ is a smooth atlas for \mathbb{P}^1 .

Solution.

(a) If $[x^1, x^2] = [y^1, y^2]$, then any element from the one is an element of the other. In particular, $(y^1, y^2) \in [x^1, x^2]$ which means $(y^1, y^2) = \lambda(x^1, x^2)$ for some λ , and then

$$\varphi_2([y^1, y^2]) = \frac{y^1}{y^2} = \frac{\lambda x^1}{\lambda x^2} = \frac{x^1}{x^2} = \varphi_1([x^1, x^2]).$$

Similarly for φ_2 . (Note that since y^1, y^2 are homogeneous coordinates for $[y^1, y^2]$, they are not simultaneously zero, so that λ also must be nonzero.)

(b) We calculate

$$\varphi_1(\psi_1(u)) = \varphi_1([1, u]) = \frac{u}{1} = u,$$

$$\psi_1(\varphi_1([x^1, x^2])) = \psi_1\left(\frac{x^2}{x^1}\right) = \left[1, \frac{x^2}{x^1}\right] = [x^1, x^2].$$

Similarly for ψ_2 .

(c) U_1 and U_2 cover \mathbb{P}^1 , because $[0,0] \notin \mathbb{P}^1$, and since $\varphi_i^{-1} = \psi_i$ and both are continuous, they are in fact homeomorphisms and therefore charts. Lastly, if $[x^1, x^2] \in U_1 \cap U_2$ then the transition map $\kappa \colon \varphi_1(U_1 \cap U_2) = \mathbb{R} \setminus 0 \to \varphi_2(U_1 \cap U_2)$ is

$$\kappa(u) = \varphi_2 \circ \varphi_1^{-1}(u) = \varphi_2([1, u]) = \frac{1}{u},$$

which is clearly smooth (note that u cannot be zero). The same obviously holds for the other transition map. Therefore this atlas is a smooth atlas.

Problem 2. (25 points.) Consider \mathbb{R}^3 with coordinates (x, y, z) and \mathbb{R}^2 with coordinates (θ, φ) . Let $g: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $g(\theta, \varphi) = (\cos \varphi \cos \theta, \cos \varphi \sin \theta, \sin \varphi)$, and let $\omega = xy \, dz \in \Omega^1(\mathbb{R}^3)$. Calculate $d(g^*\omega)$ and $g^*(d\omega)$ separately, and verify that they are equal.

Solution. We calculate

$$g^{*}(\omega) = g^{*}(xy \, \mathrm{d}z) = ((xy) \circ g) g^{*}(\mathrm{d}z) = (x \circ g)(y \circ g) \,\mathrm{d}(z \circ g)$$
$$= \cos \varphi \cos \theta \cos \varphi \sin \theta \,\mathrm{d}(\sin \varphi) = \cos^{3} \varphi \cos \theta \sin \theta \,\mathrm{d}\varphi,$$
$$\mathrm{d}(g^{*}\omega) = \mathrm{d}(\cos^{3} \varphi \cos \theta \sin \theta \,\mathrm{d}\varphi) = \frac{\partial}{\partial \theta}(\cos^{3} \varphi \cos \theta \sin \theta) \,\mathrm{d}\theta \wedge \mathrm{d}\varphi$$
$$= \cos^{3} \varphi(\cos^{2} \theta - \sin^{2} \theta) \,\mathrm{d}\theta \wedge \mathrm{d}\varphi.$$

On the other hand

$$d\omega = x \, dy \wedge dz + y dx \wedge dz,$$

$$g^*(d\omega) = (x \circ g) \, d(y \circ g) \wedge (z \circ g) + (y \circ g) \, d(x \circ g) \wedge (z \circ g)$$

$$= \cos \varphi \cos \theta \frac{\partial}{\partial \theta} (\cos \varphi \sin \theta) \cos \varphi \, d\theta \wedge d\varphi + \cos \varphi \sin \theta \frac{\partial}{\partial \theta} (\cos \varphi \cos \theta) \cos \varphi \, d\theta \wedge d\varphi$$

$$= \cos^3 \varphi \cos^2 \theta \, d\theta \wedge d\varphi - \cos^3 \varphi \sin^2 \theta \, d\theta \wedge d\varphi = g^*(\omega).$$

10 points for each side.

Problem 3. Let $\mathbb{B}^n = \{x \in \mathbb{R}^n \mid |x|^2 = (x^1)^2 + \dots + (x^n)^2 \le 1\}$ be the filled sphere, and let

$$\omega = \sum_{i=1}^{n} (-1)^{i-1} x^i \, \mathrm{d} x^1 \wedge \dots \wedge \widehat{\mathrm{d} x^i} \wedge \dots \wedge \mathrm{d} x^n \in \Omega^{n-1}(\mathbb{B}^n)$$

(the hat over dx^i in the *i*-th term means that it is *not* present in that term).

- (a) (10 points.) Calculate $d\omega$.
- (b) (10 points.) Show that

$$\int_{\partial \mathbb{B}^n} \omega > 0.$$

(c) (10 points.) Restricting ω to $\partial \mathbb{B}^n$ yields an (n-1)-form $\omega|_{\partial \mathbb{B}^n} \in \Omega^{n-1}(\partial \mathbb{B}^n)$. Suppose $g: \mathbb{B}^n \to \partial \mathbb{B}^n$ is a smooth map from \mathbb{B}^n to its boundary. Show that

 $d(q^*(\omega|_{\partial \mathbb{B}^n})) = 0.$

(d) (10 points). Restricting g to the boundary $\partial \mathbb{B}^n$ of \mathbb{B}^n , we obtain a map $g|_{\partial \mathbb{B}^n} : \partial \mathbb{B}^n \to$ $\partial \mathbb{B}^n$. Show that $g|_{\partial \mathbb{B}^n}$ is not the identity.

Solution.

- (a) $d\omega = n dx^1 \wedge \cdots \wedge dx^n$.
- (b) $\int_{\partial \mathbb{B}^n} \omega = \int_{\mathbb{B}^n} d\omega = n \int_{\mathbb{B}^n} dx^1 \wedge \dots \wedge dx^n = n \operatorname{Vol}(\mathbb{B}^n) > 0.$ (c) We know $d(g^* \omega|_{\partial \mathbb{B}^n}) = g^*(d\omega|_{\partial \mathbb{B}^n})$, but then $d\omega|_{\partial \mathbb{B}^n}$ is is an *n*-form on an (n-1)dimensional manifold. Therefore it is 0.
- (d) Suppose that this restriction is the identity, then, using (b),

$$0 < \int_{\partial \mathbb{B}^n} \omega = \int_{\partial \mathbb{B}^n} \mathrm{id}^* \, \omega = \int_{\partial \mathbb{B}^n} g^* \omega = \int_{\mathbb{B}^n} \mathrm{d}(g^* \omega) = 0,$$

a contradiction.